Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Drug Metab Pers Ther ; 39(1): 35-45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469711

RESUMO

OBJECTIVES: Diabetic nephropathy is a chief reason of mortality particularly in individuals with renal dysfunction. The current research was aimed to assess the nephroprotective portion of Vaccinium oxycoccos toward mice diabetic nephropathy induced by streptozotocin (STZ). V. oxycoccos was purchased and used for hydroalcoholic extraction. METHODS: Sixty male mice were subjected to STZ-intraperitoneal injection (45 mg/kg). After diabetes induction, mice were divided into five groups of diabetic control (received only STZ), non-diabetic control (received only citrate buffer), two V. oxycoccos treatment (received V. oxycoccos extract (200 and 400 mg/kg) oral daily by gavage), and metformin treatment (received metformin (500 mg/kg) oral daily by gavage). Glucose and weight of mice were checked weekly. RESULTS: After 28 days, the effect of V. oxycoccos extract on serum and urine parameters were assessed. STZ caused significant decreased in the mice body weight. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest weight loss at day 28 (70.2±1.38 g). STZ caused significant increase in the mice FBS. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest FBS at day 28 (189.2±1.20 mg/dL). Treatment of mice with V. oxycoccos (400 mg/kg) caused the lowest increase in the levels of cholesterol, HbA1c and triglycerides compared to the diabetic control mice. Compared to the diabetic control group, mice treated with V. oxycoccos (400 mg/kg) had the highest HDL, insulin, SOD, and GSH (p<0.05). The lowest serum BUN, CR, and UR were found in mice treated with V. oxycoccos (400 mg/kg). Anti-inflammatory effects of V. oxycoccos (400 mg/kg) was shown by the lowest TNF-α, IL-6, and TGF-ß1 concentration in mice treated with V. oxycoccos (400 mg/kg). CONCLUSIONS: The current study disclosed that treatment with V. oxycoccos resulted in substantial development in the serum and urine parameters and also antioxidant and anti-inflammatory response of STZ-induced diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Metformina , Vaccinium macrocarpon , Vaccinium , Camundongos , Masculino , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/induzido quimicamente , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/uso terapêutico , Extratos Vegetais/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Glicemia
2.
Pharmazie ; 79(1): 6-10, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38509628

RESUMO

Promoting antidiabetic phytomedicines necessitates evidence-based preclinical investigations, particularly in animal models. The present study investigated the validity of using the streptozotocin-nicotinamide-induced type 2 diabetic (STZ/NA-induced T2DM) model to evaluate the effects of Physalis peruviana leaf crude extracts on controlling blood glucose levels and regulating physiological biomarkers in rats. Aqueous and methanol extracts dissolved in carboxymethylcellulose 1% (100, 200, mg/kg/day) were administered orally to STZ/NA-induced T2DM rats alongside glibenclamide (5 mg/kg) as the standard drug for four weeks. Blood samples were collected in fasting rats on days 1, 7, 14, 21, and 28 to measure glucose concentration, lipoprotein-cholesterol, and common serum biomarkers. Nutrition characteristics were also monitored, as well as the pancreas histology. Administration of STZ/NA in Wistar rats induced the T2DM significantly lower than did STZ alone (glycaemia 200 vs 400 mg/dL). The significant effects observed with plant extracts compared to untreated diabetic rats were blood glucose reduction (28-52 %), HDL-C increase, LDL-C decrease, ALAT increase, WBC increase, body weight gain (24%), and pancreas protection. The findings confirm the antidiabetic effect of P. peruviana in T2DM animal model.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Physalis , Ratos , Animais , Glicemia , Niacinamida/efeitos adversos , Ratos Wistar , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais , Folhas de Planta , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Biomarcadores
3.
Theranostics ; 14(5): 2190-2209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505600

RESUMO

Here we explored the potential role of Gαi2 (G protein subunit alpha i2) in endothelial cell function and angiogenesis. Methods: Genetic methodologies such as shRNA, CRISPR/Cas9, dominant negative mutation, and overexpression were utilized to modify Gαi2 expression or regulate its function. Their effects on endothelial cell functions were assessed in vitro. In vivo, the endothelial-specific Gαi2 shRNA adeno-associated virus (AAV) was utilized to silence Gαi2 expression. The impact of this suppression on retinal angiogenesis in control mice and streptozotocin (STZ)-induced diabetic retinopathy (DR) mice was analyzed. Results: Analysis of single-cell RNA sequencing data revealed Gαi2 (GNAI2) was predominantly expressed in retinal endothelial cells and expression was increased in retinal endothelial cells following oxygen-induced retinopathy (OIR) in mice. Moreover, transcriptome analysis linking Gαi2 to angiogenesis-related processes/pathways, supported by increased Gαi2 expression in experimental OIR mouse retinas, highlighted its possible role in angiogenesis. In various endothelial cell types, shRNA-induced silencing and CRISPR/Cas9-mediated knockout (KO) of Gαi2 resulted in substantial reductions in cell proliferation, migration, invasion, and capillary tube formation. Conversely, Gαi2 over-expression in endothelial cells induced pro-angiogenic activities, enhancing cell proliferation, migration, invasion, and capillary tube formation. Furthermore, our investigation revealed a crucial role of Gαi2 in NFAT (nuclear factor of activated T cells) activation, as evidenced by the down-regulation of NFAT-luciferase reporter activity and pro-angiogenesis NFAT-targeted genes (Egr3, CXCR7, and RND1) in Gαi2-silenced or -KO HUVECs, which were up-regulated in Gαi2-overexpressing endothelial cells. Expression of a dominant negative Gαi2 mutation (S48C) also down-regulated NFAT-targeted genes, slowing proliferation, migration, invasion, and capillary tube formation in HUVECs. Importantly, in vivo experiments revealed that endothelial Gαi2 knockdown inhibited retinal angiogenesis in mice, with a concomitant down-regulation of NFAT-targeted genes in mouse retinal tissue. In contrast, Gαi2 over-expression in endothelial cells enhanced retinal angiogenesis in mice. Single-cell RNA sequencing data confirmed increased levels of Gαi2 specifically in retinal endothelial cells of mice with streptozotocin (STZ)-induced diabetic retinopathy (DR). Importantly, endothelial Gαi2 silencing ameliorated retinal pathological angiogenesis in DR mice. Conclusion: Our study highlights a critical role for Gαi2 in NFAT activation, endothelial cell activation and angiogenesis, offering valuable insights into potential therapeutic strategies for modulating these processes.


Assuntos
Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/farmacologia , Células Endoteliais/metabolismo , 60489 , Estreptozocina/efeitos adversos , Oxigênio/metabolismo , RNA Interferente Pequeno/metabolismo , Proliferação de Células
4.
Acta Cir Bras ; 39: e390124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324798

RESUMO

PURPOSE: To determine the effect of gallic acid or its combination with glibenclamide on some biochemical markers and histology of the cornea of streptozotocin (STZ) induced diabetic rats. METHODS: Following induction of diabetes, 24 male albino rats were divided into four groups of six rats each. Groups 1 and 2 (control and diabetic) received rat pellets and distilled water; group 3 (gallic acid) received rat pellets and gallic acid (10 mg/kg, orally) dissolved in the distilled water; and group 4 (gallic acid + glibenclamide) received rat pellets, gallic acid (10 mg/kg, orally), and glibenclamide (5 mg/kg, orally) dissolved in the distilled water. The treatments were administered for three months after which the rats were sacrificed after an overnight fast. Blood and sera were collected for the determination of biochemical parameters, while their eyes were excised for histology. RESULTS: STZ administration to the rats induced insulin resistance, hyperglycemia, microprotenuria, loss of weight, oxidative stress, inflammation, and alteration of their cornea histology, which was abolished following supplementation with gallic acid or its combination with glibenclamide. CONCLUSIONS: The study showed the potentials of gallic acid and glibenclamide in mitigating systemic complication and histological changes in the cornea of diabetic rats induced with STZ.


Assuntos
Diabetes Mellitus Experimental , Glibureto , Ratos , Masculino , Animais , Glibureto/efeitos adversos , Hipoglicemiantes/efeitos adversos , Ácido Gálico/efeitos adversos , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Córnea/patologia , Água/efeitos adversos , Glicemia
5.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396842

RESUMO

Type 2 diabetes is characterized by hyperglycemia and a relative loss of ß-cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin-nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α-amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of ß-cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes.


Assuntos
Ácido Betulínico , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Feminino , Animais , Antioxidantes/uso terapêutico , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos Wistar , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Glicemia , Extratos Vegetais/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Glucose/efeitos adversos , Biomarcadores , alfa-Amilases
6.
Histochem Cell Biol ; 161(3): 239-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37943325

RESUMO

Diabetes mellitus is a chronic metabolic disease characterized by persistent hyperglycemia, revealing a decrease in insulin efficiency. The sustained glucotoxic pancreatic microenvironment increases reactive oxygen species generation, resulting in chronic oxidative stress responsible for massive DNA damage. This triggers PARP-1 activation with both NAD+ and ATP depletion, affecting drastically pancreatic beta cells' energy storage and leading to their dysfunction and death. The aim of the present study is to highlight the main histological changes observed in pancreatic islets pre-treated with a unique NADH intraperitoneal injection in a streptozotocin-(STZ)-induced diabetes model. In order to adjust NADH doses, a preliminary study with three different doses, 500 mg/kg, 300 mg/kg, and 150 mg/kg, respectively, was conducted. Subsequently, and on the basis of the results of the aforementioned study, Wistar rats were randomly divided into four groups: non-diabetic control group, diabetics (STZ 45 mg/kg), NADH-treated group (150 mg/kg) 15 min before STZ administration, and NADH-treated group (150 mg/kg) 15 min after STZ administration. The effect of NADH was assessed by blood glucose level, TUNEL staining, histo-morphological analysis, and immunohistochemistry. The optimum protective dose of NADH was 150 mg/kg. NADH effectively decreased hyperglycemia and reduced diabetes induced by STZ. Histologically, NADH pre-treatment revealed a decrease in beta cell death favoring apoptosis over necrosis and therefore preventing inflammation with further beta cell destruction. Our data clearly demonstrate that NADH prior or post-treatment could effectively prevent the deleterious loss of beta cell mass in STZ-induced diabetes in rats and preserve the normal pancreatic islet's function.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Células Secretoras de Insulina , Ratos , Animais , NAD/efeitos adversos , Ratos Wistar , Estreptozocina/efeitos adversos , Injeções Intraperitoneais , Insulina/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/induzido quimicamente , Hiperglicemia/prevenção & controle , Diabetes Mellitus Experimental/metabolismo , Glicemia/metabolismo
7.
J Biochem Mol Toxicol ; 38(1): e23609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037266

RESUMO

Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia due to insulin deficiency and/or resistance. Vitamin K (VK) is a group of fat-soluble molecules, including naturally occurring vitamin K1 (phylloquinone). vitamin K2 (menaquinone), and synthetic vitamin K3 (menadione). Beyond coagulation, the health benefits of VK have been described to play different roles in both physiological and pathological processes such as inflammation, energy metabolism, neuroprotection, cellular growth, and survival. It was aimed to observe the antioxidant and/or neuroprotective activity of vitamin K1 in our model of chick embryo diabetic neuropathy (DN) induced by streptozotocin (STZ). Ninety White Leghorn, fertile and 0-day-old SPF (specific pathogen-free) eggs (57 ± 4 gr) were used in the study. Chick embryo blood brain tissues were taken for biochemical evaluation. Plasma insulin and glucose levels were measured. In addition, brain tissue total antioxidant level (TAS), total oxidant level (TOS), malondialdehyde (MDA), and vascular endothelial growth factor (VEGF) levels were measured. Plasma glucose levels were higher in the STZ-treated groups and lower in the treatment groups. Plasma insulin levels were observed to be higher in STZ groups in groups treated with high VK. Low TAS, high MDA, TOS, and VEGF levels were recorded in brain tissue STZ groups. Low VEGF, TOS, and MDA levels were recorded in the group treated with the highest VK, while high TAS levels were observed. In our STZ-induced chick embryo diabetic neuropathy model, we observed that VK1 reduced oxidant damage by showing antioxidant properties or by modulating antioxidant enzymes.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Embrião de Galinha , Animais , Antioxidantes/efeitos adversos , Vitamina K , Fator A de Crescimento do Endotélio Vascular , Vitamina K 1/efeitos adversos , Estreptozocina/efeitos adversos , Galinhas/metabolismo , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/tratamento farmacológico , Neuroproteção , Diabetes Mellitus Experimental/induzido quimicamente , Vitamina K 3 , Vitamina K 2/efeitos adversos , Vitamina K 2/metabolismo , Insulina , Oxidantes , Glicemia/metabolismo
8.
Appl Biochem Biotechnol ; 196(3): 1636-1651, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37436545

RESUMO

OBJECTIVE: Baicalin (BC) is a flavonoid reported to have various pharmacological activities, including antioxidant, anti-cancer, anti-inflammatory, anti-allergy, immune regulation, and anti-diabetic. This study examines the probable mechanism for gestational diabetes mellitus (GDM) brought on by streptozotocin (STZ) and the impact of BC on fetal development via AGEs (advanced serum glycation end products) and RAGE (the role of advanced glycation end products). MATERIAL AND METHOD: STZ has been used in the current experimental study to induce diabetes mellitus in pregnant animals (gestational diabetes mellitus). GDM pregnant animals were separated into five groups and were treated with BC in a dose-dependent pattern for 19 days. At the end of the experiment, the fetus and blood samples were drawn from all the pregnant rats to assess the biochemical parameter as well as AGE-RAGE. RESULT: Administration of BC at varying doses leads to enhancement in the weight of the fetus body and placenta while gestational diabetic pregnant animals induced by STZ had a lower weight of the fetus body and placenta. The dose-dependent pattern of BC also enhanced fasting insulin (FINS), high-density lipoprotein (HDL), serum insulin, and hepatic glycogen. It also significantly enhanced the content of the antioxidant profile and pro-inflammatory cytokines and modulated the gene expression (VCAM- 1, p65, EGFR, MCP-1, 1NOX2, and RAGE) in various tissues in gestational diabetes mellitus pregnant rats. CONCLUSION: Baicalin demonstrated the potential impact on the embryo's development via the AGE-RAGE signaling pathway in STZ-induced GDM pregnant animals.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Gravidez , Humanos , Feminino , Ratos , Animais , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Estreptozocina/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transdução de Sinais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Insulina
9.
Acta Biochim Pol ; 70(4): 985-990, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060807

RESUMO

BACKGROUND: In the present study effect of tretinoin derivative was investigated on the pathogenesis of gestational diabetes mellitus (GDM) in mice model in vivo. MATERIALS AND METHODS: Diabetes was induced in mice by injecting Streptozotocin (STZ) for 5consecutive days at a dose of 65 mg/kg body weight through the intraperitoneal route. Tretinoin derivative was given to the mice at 0.12 and 0.25 mg/kg doses through gavage in normal saline alternately for one week after STZ injection. RESULTS: The results demonstrated that tretinoin derivative administration to the diabetic mice significantly (P<0.05) alleviated the blood FBG and FINS levels. Administration of tretinoin derivative to the diabetic mice significantly (P<0.05) promoted the blood HDL level and alleviated TC and TG levels. The administration of tretinoin derivative to the diabetic mice significantly (P<0.05) alleviated the CRP, IL-6and TNF-α production in pancreatic tissues. Tretinoin derivative administration to the diabetic mice significantly (P<0.05) elevated the SOD activity, and CAT level and lowered the MDA level in pancreatic tissues. The TXNRD1 expression in diabetic mice was comparable to that in the normal group after administration of tretinoin derivativeat the dose of 0.25 mg/kg dose. In silico data demonstrated that tretinoin derivativeinteracts with TXNRD1 protein with the binding affinity ranging from -10 to 9.4 kcal/ mol. CONCLUSION: In conclusion, tretinoin derivative administration effectively regulated streptozotocin-induced changes in fasting blood glucose, insulin level, high-density lipid level and triglyceride level in diabetic mice in vivo. The streptozotocin-induced excessive production of C-reactive protein and inflammatory cytokines was also down-regulated in diabetic mice on administration of tretinoin derivative. Therefore, tretinoin derivative can be investigated further as a therapeutic agent for the treatment of gestational diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Camundongos , Animais , Feminino , Humanos , Gravidez , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/tratamento farmacológico , Glicemia , Estreptozocina/efeitos adversos , Tretinoína/efeitos adversos , Hipoglicemiantes/farmacologia , Tiorredoxina Redutase 1
10.
Turk J Med Sci ; 53(4): 894-901, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38031940

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease. Thymoquinone (TQ) has broad biological functions, including antiinflammatory, antioxidant, neuroprotective properties. Memantine (MEM) is indicated for the symptomatic treatment of moderate to severe AD. We aimed to evaluate the effect of TQ alone or in combination with MEM on memory and hippocampal morphology in an STZ-induced rat AD model. METHODS: Thirty male rats were included in this study. The AD model was created by giving ICV STZ. The rats were divided into 5 groups (n = 6 each). Group 1 (control group): The rats received only ICV-STZ 3 mg/kg for 2 weeks. Group 2 (sham group): In addition to ICV STZ, 9% NaCl, 1 mL/day i.p. for 2 weeks of injection, was applied. Group 3 (TQ group): In addition to ICV STZ, rats received TQ 10 mg/kg i.p. for 2 weeks. Group 4 (MEM group): In addition to ICV STZ, rats were given MEM at a dose of 5 mg/kg for two weeks. Group 5 (TQ+MEM group): In addition to ICV STZ, this group was given TQ (10 mg/kg/day, i.p.) and MEM (5 mg/kg/day, i.p.) for 2 weeks. On the 15th day, passive avoidance learning (PAL) was applied to all groups. Then, rats were sacrificed, neurons in the hippocampal CA1, CA2, CA3 regions were evaluated. RESULTS: Groups 3, 4, 5 had longer latency periods than groups 1 and 2. The neuron density in the CA1, CA2, CA3 regions had decreased in groups 1 and 2 compared to groups 3, 4, 5. There were significantly more neurons in groups 3, 4, 5 than in groups 1 and 2. DISCUSSION: We found that TQ alone and in combination with MEM showed ameliorative effects on memory and hippocampal morphology. TQ may offer a promising treatment strategy for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Memantina/efeitos adversos , Estreptozocina/efeitos adversos , Hipocampo , Modelos Animais de Doenças , Aprendizagem em Labirinto
11.
Medicina (Kaunas) ; 59(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37893548

RESUMO

Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ratos , Masculino , Animais , NF-kappa B/genética , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Estreptozocina/efeitos adversos , Fator 2 Relacionado a NF-E2/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Ratos Wistar , Estresse Oxidativo , Inflamação/prevenção & controle , Fibrose , Apoptose , RNA Mensageiro
12.
Sci Rep ; 13(1): 17625, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848702

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease, characterized by persistent hyperglycemia resulting from diminished insulin secretion or insulin resistance. The present study evaluated the ameliorative effects of Withaferin-A (WA) on DM-induced reproductive dysfunction in mice. For the same, mice were intraperitoneally injected with Streptozotocin (STZ), (40 mg/kg/day) for 5 consecutive days to induce DM. Mice were then treated with WA (8 mg/kg/day) in normal and diabetic conditions (STZ + WA). Next, blood glucose levels, oral glucose tolerance, intraperitoneal insulin tolerance, oxidative stress and reproductive parameters were estimated. For reproductive performance, immunofluorescent localization of gonadotropin-releasing hormone (GnRH-I) and estrogen receptor alpha (ERα) in the preoptic area and paraventricular nucleus region of hypothalamus and ERα in testes was performed. STZ-induced diabetes triggered reproductive dysfunctions as mediated by low GnRH-I and ERα in the brain and ERα in the testes along with declined testosterone and estradiol levels. Treatment with WA significantly reduced the blood glucose levels and enhanced glucose clearance accompanied by reduced oxidative stress in the brain, pancreas and testes as indicated by the low levels of H2O2 and MDA in diabetic mice treated with WA (STZ + WA). This study reports, for the first time, that WA can efficiently ameliorate DM-induced reproductive dysfunctions by enhancing endogenous testosterone, estrogen and increased GnRH-I and ERα in the brain and ERα in the testes of DM-induced male mice.


Assuntos
Diabetes Mellitus Experimental , Receptor alfa de Estrogênio , Vitanolídeos , Animais , Masculino , Camundongos , Glicemia/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Estreptozocina/efeitos adversos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/efeitos adversos , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico
13.
Mol Biol Rep ; 50(12): 9875-9886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856062

RESUMO

BACKGROUND: Diabetic Mellitus is characterized by a lack or failure of insulin to bind to its target receptor or failure of the pancreas to yield insulin. This study evaluated the antihyperglycemic activity of 14-deoxy, 11, 12-didehydro andrographolide on streptozotocin-nicotinamide-induced type 2 diabetic rats. Diabetic conditions were induced by administering streptozotocin at a dosage of 45 mg/kg body weight and nicotinamide at a dosage of 110 mg/kg body weight through intraperitoneal injection. MATERIALS AND METHODS: Diabetic-induced rats were treated with 14-deoxy, 11, 12-didehydro andrographolide concentrations between 10 and 500 mg/kg body weight. The blood glucose level and body weight of the rats were periodically examined. The pancreas was isolated and the histopathological staining was performed after making fine sections of the pancreas using a microtome. The influence of 14-deoxy, 11, 12-didehydro andrographolide on the expression level of various insulin signaling cascades was determined with q-PCR and western blotting. RESULTS: The blood glucose level of the diabetic-induced rats was significantly (p < 0.05) higher when compared with the control group and resulted in a drop in the blood glucose level of the diabetic rats. Oral glucose level was also reduced in the treatment group and no significant reduction was noted in the untreated. The lipid profiling revealed that the atherogenic index and cholesterol ratio was increased in the diabetic group over the control group. Upregulation of the insulin cascades like IRTK and GLUT4 was observed by the q-PCR and upregulation of GLUT4 and IR-ß was observed by the western blot analysis. CONCLUSION: Overall, the finding indicates that 14-deoxy, 11, 12-didehydro andrographolide exhibited antihyperglycemic activity by modulating the expression of insulin cascades.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Hipoglicemiantes , Estreptozocina/efeitos adversos , Glicemia/metabolismo , Niacinamida/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Extratos Vegetais/farmacologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peso Corporal
14.
Int J Mol Sci ; 24(19)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834398

RESUMO

It is undeniable that as people get older, they become progressively more susceptible to neurodegenerative illnesses such as Alzheimer's disease (AD). Memory loss is a prominent symptom of this condition and can be exacerbated by uneven levels of certain metals. This study used inductively coupled plasma mass spectrometry (ICP-MS) to examine the levels of metals in the blood plasma, frontal cortex, and hippocampus of Wistar rats with AD induced by streptozotocin (STZ). It also tested the effects of the antioxidant hydroxytyrosol (HT) on metal levels. The Barnes maze behavior test was used, and the STZ group showed less certainty and greater distance when exploring the Barnes maze than the control group. The results also indicated that the control group and the STZ + HT group exhibited enhanced learning curves during the Barnes maze training as compared to the STZ group. The ICP-MS analysis showed that the STZ group had lower levels of cobalt in their blood plasma than the control group, while the calcium levels in the frontal cortex of the STZ + HT group were higher than in the control group. The most important finding was that copper levels in the frontal cortex from STZ-treated animals were higher than in the control group, and that the STZ + HT group returned to equivalent levels to the control group. The antioxidant HT can restore copper levels to their basal physiological state. This finding may help explain HT's potential beneficial effect in AD-patients.


Assuntos
Doença de Alzheimer , Humanos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Ratos Wistar , Antioxidantes/efeitos adversos , Cobre/farmacologia , Modelos Animais de Doenças , Hipocampo , Estreptozocina/efeitos adversos , Aprendizagem em Labirinto
15.
Biomed Pharmacother ; 168: 115681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837880

RESUMO

This experiment was conducted to evaluate the Dalbergiella welwitschia alkaloid-rich extracts on liver damage in streptozotocin-induced diabetic rats. Hence, to induce diabetes, 45 mg/kg body weight of streptozotocin was intraperitoneally injected into the Wistar rats. Subsequently, 5 % (w/v) of glucose water was given to the induced animals for 24 h. Thus, the animals (48) were grouped into five groups (n = 8), containing normal control (NC), diabetic control (DC), diabetic rats placed on low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e. DWL and DWH respectively), and diabetic rats administered 200 mg/kg body weight of metformin (MET). The animals were sacrificed on the 21st day of the experiment, blood and liver were harvested, and different liver damage biomarkers were evaluated. The results obtained demonstrated that diabetic rats administered DWL, DWH and MET significantly (p < 0.05) increased hepatic AST, ALT, albumin, SOD, CAT, GSH, and GPX levels when compared to DC with no significant (p > 0.05) different when compared with NC. Also, diabetic rats administered DWL, DWH and MET revealed a significant (p < 0.05) decrease in GGT and MDA levels, as well as, fragmented DNA and protein carbonyl levels when compared to DC with no significant (p > 0.05) different when compared with NC. In addition, histological examination revealed that diabetic rats placed on DWL, DWH and MET normalized the hepatocytes. Consequently, it can be inferred that alkaloid-rich extracts from D. welwitschi leaf could be helpful in improving liver damage associated with diabetes mellitus rats.


Assuntos
Alcaloides , Diabetes Mellitus Experimental , Hepatopatias , Metformina , Ratos , Animais , Ratos Wistar , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/metabolismo , Extratos Vegetais/efeitos adversos , Hepatopatias/metabolismo , Fígado/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Metformina/farmacologia , Peso Corporal , Glicemia/metabolismo , Estresse Oxidativo , Hipoglicemiantes/efeitos adversos
16.
Mol Biol Rep ; 50(11): 9129-9142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749346

RESUMO

BACKGROUND: Natural products have been recommended as a complementary therapy for type 2 diabetes mellitus (T2DM) due to constraints of safety and tolerability of existing anti-diabetic agents. Luteolin exhibits anti-diabetic and anti-inflammatory effects. Hence, the impact of luteolin on glucose homoeostasis and organ damage was investigated in high-fat diet (HFD) and streptozotocin (STZ) induced T2DM in rats. METHODS AND RESULTS: Male Wistar rats were maintained on HFD (provided 55% energy as fat) for 10 days. Subsequently, a single dose of 40 mg/kg STZ was injected intraperitoneally on the 11th day. Seventy-two hours after STZ administration, diabetic rats with established hyperglycemia (fasting serum glucose > 200 mg/dL) were randomized into different groups having six rats each and orally administered either 0.5% hydroxy propyl cellulose or pioglitazone (10 mg/kg) or luteolin (50 mg/kg or 100 mg/kg) once daily for 28 days, while continuing HFD for respective groups. Luteolin significantly reduced hyperglycaemia, homoeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) levels, and improved hypoinsulinemia and HOMA of b-cell function (HOMA-B) in a dose-dependent manner. Increased TNF-α, IL-6 and NFκB levels in diabetic rats were significantly regulated. Additionally, luteolin significantly augmented PPAR-γ expression while attenuating sterol regulatory element binding protein-1c (SREBP-1c) expression. Histopathological scrutiny validated that luteolin effectively attenuated HFD-STZ-induced injury in pancreatic ß-cells and kidneys to near normalcy. CONCLUSION: Our study showed that luteolin ameliorated hyperglycemia and improved hypoinsulinemia, ß-cell dysfunction, and renal impairment in HFD-STZ-induced diabetic rats by attenuating inflammation and dysregulated cytokine secretion through modulation of PPAR-γ, TNF-α, IL-6 and NF-kB expression and down-regulation of SREBP-1c.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Luteolina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Insulina , Fator de Necrose Tumoral alfa , Interleucina-6 , Ratos Wistar , Glicemia/metabolismo , Glucose , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , NF-kappa B/metabolismo , Rim/metabolismo , Estreptozocina/efeitos adversos
17.
J Neurophysiol ; 130(3): 671-683, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584088

RESUMO

Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Euterpe , Animais , Camundongos , Caspases , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estreptozocina/efeitos adversos
18.
Nucl Med Biol ; 122-123: 108370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556928

RESUMO

BACKGROUND: Diabetes mellitus is a chronic progressive metabolic disorder that affects millions of people worldwide. Emerging evidence suggests the important roles of sphingolipid metabolism in diabetes. In particular, sphingosine-1-phosphate (S1P) and S1P receptor 2 (S1PR2) have important metabolic functions and are involved in several metabolic diseases. In diabetes, S1PR2 can effectively preserve ß cells and improve glucose/insulin tolerance in high-fat diet induced and streptozotocin (STZ)-induced diabetic mouse models. We previously developed a group of potent and selective S1PR2 ligands and radioligands. METHODS: In this study, we continued our efforts and characterized our leading S1PR2 radioligand, [11C]TZ34125, in a STZ-induced diabetic mouse model. [11C]TZ34125 was radiosynthesized in an automated synthesis module and in vitro saturation binding assay was performed using recombinant human S1PR2 membrane. In vitro saturation autoradiography analysis was also performed to determine the binding affinity of [11C]TZ34125 against mouse tissues. Type-1 diabetic mouse model was developed following a single high dose of STZ in C57BL/6 mice. Ex vivo biodistribution was performed to evaluate the distribution and amount of [11C]TZ34125 in tissues. In vitro autoradiography analysis was performed to compare the uptake of [11C]TZ34125 between diabetic and control animals in mouse spleen and pancreas. RESULTS: Our in vitro saturation binding assay using [11C]TZ34125 confirmed [11C]TZ34125 is a potent radioligand to recombinant human S1PR2 membrane with a Kd value of 0.9 nM. Saturation autoradiographic analysis showed [11C]TZ34125 has a Kd of 67.5, 45.9, and 25.0 nM to mouse kidney, spleen, and liver tissues respectively. Biodistribution study in STZ-induced diabetic mice showed the uptake of [11C]TZ34125 was significantly elevated in the spleen (~2 fold higher) and pancreas (~1.4 fold higher) compared to normal controls. The increased uptake of [11C]TZ34125 was further confirmed using autoradiographic analysis in the spleen and pancreases of STZ-induced diabetic mice, indicating S1PR2 can potentially act as a biomarker of diabetes in pancreases and inflammation in spleen. Future mechanistic analysis and in vivo quantitative assessment using non-invasive PET imaging in large animal model of diabetes is worthwhile. CONCLUSIONS: Overall, our data showed an increased uptake of our lead S1PR2-specific radioligand, [11C]TZ34125, in the spleen and pancreases of STZ-induced diabetic mice, and demonstrated [11C]TZ34125 has a great potential for preclinical and clinical usage for assessment of S1PR2 in diabetes and inflammation.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/diagnóstico por imagem , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Inflamação , Receptores de Esfingosina-1-Fosfato
19.
Physiol Genomics ; 55(9): 381-391, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458461

RESUMO

This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Estreptozocina/efeitos adversos , Estreptozocina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Glicemia/metabolismo
20.
J Exp Zool A Ecol Integr Physiol ; 339(10): 915-924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37522474

RESUMO

Using a rat model of type 1 diabetes (T1D) obtained by treatment with streptozotocin, an antibiotic that destroys pancreatic ß-cells, we evaluated the influence of subsequent hyperglycemia on the morphology and physiology of the Harderian gland (HG). HG is located in the medial corner of the orbit of many terrestrial vertebrates and, in rodents, is characterized by the presence of porphyrins, which being involved in the phototransduction, through photo-oxidation, produce reactive oxygen species activating the autophagy pathway. The study focused on the expression of some morphological markers involved in cell junction formation (occludin, connexin-43, and α-tubulin) and mast cell number (MCN), as well as autophagic and apoptotic pathways. The expression of enzymes involved in steroidogenesis [steroidogenic acute regulatory protein (StAR), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD)] and the level of lipid peroxidation by thiobarbituric acid reactive species assay were also evaluated. The results strongly indicate, for the first time, that T1D has a negative impact on the pathophysiology of rat HG, as evidenced by increased oxidative stress, morphological and biochemical alterations, hyperproduction and secretion of porphyrins, increased MCN, reduced protein levels of StAR and 3ß-HSD, and, finally, induced autophagy and apoptosis. All the combined data support the use of the rat HG as a suitable experimental model to elucidate the molecular damage/survival pathways elicited by stress conditions.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Glândula de Harder , Porfirinas , Animais , Ratos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glândula de Harder/metabolismo , Porfirinas/efeitos adversos , Porfirinas/metabolismo , Estreptozocina/efeitos adversos , Estreptozocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...